Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Polymers (Basel) ; 14(24)2022 Dec 13.
Article in English | MEDLINE | ID: covidwho-2163560

ABSTRACT

Small synthetic TLR7/8-agonists can be used as vaccine adjuvants to enhance cell and humoral-mediated immune responses to specific antigens. Despite their potency, after local injection they can be dispersed to undesired body parts causing high reactogenicity, limiting their clinical applications. Here we describe a vaccination strategy that employs the covalent conjugate of a mannose and TLR7/8 agonist as a vaccine adjuvant to take advantage of mannose binding C-type lectins on dendritic cells to enhance the vaccine's immunogenicity. The mannose-TLR7/8 agonist conjugate can self-assemble into nanoparticles with the hydrophilic mannose on the outside and hydrophobic TLR7/8 agonist inside. Although its ability to stimulate HEK-BlueTM hTLR7/8 cells dropped, it can efficiently stimulate mouse bone marrow-derived dendritic cells as indicated by the up-regulation of CD80 and CD86, and higher cytokine expression levels of TNF-α, IL6, and IL-12p70 than the native TLR7/8 agonist. In vivo, vaccination using the SARS-CoV-2 RBD trimer as the antigen and the conjugate as the adjuvant induced a significantly higher amount of IgG2a. These results suggest that the mannose-TLR7/8-agonist conjugate can be used as an effective vaccine adjuvant.

2.
Proc Natl Acad Sci U S A ; 117(17): 9490-9496, 2020 04 28.
Article in English | MEDLINE | ID: covidwho-38297

ABSTRACT

Currently, there are no approved specific antiviral agents for novel coronavirus disease 2019 (COVID-19). In this study, 10 severe patients confirmed by real-time viral RNA test were enrolled prospectively. One dose of 200 mL of convalescent plasma (CP) derived from recently recovered donors with the neutralizing antibody titers above 1:640 was transfused to the patients as an addition to maximal supportive care and antiviral agents. The primary endpoint was the safety of CP transfusion. The second endpoints were the improvement of clinical symptoms and laboratory parameters within 3 d after CP transfusion. The median time from onset of illness to CP transfusion was 16.5 d. After CP transfusion, the level of neutralizing antibody increased rapidly up to 1:640 in five cases, while that of the other four cases maintained at a high level (1:640). The clinical symptoms were significantly improved along with increase of oxyhemoglobin saturation within 3 d. Several parameters tended to improve as compared to pretransfusion, including increased lymphocyte counts (0.65 × 109/L vs. 0.76 × 109/L) and decreased C-reactive protein (55.98 mg/L vs. 18.13 mg/L). Radiological examinations showed varying degrees of absorption of lung lesions within 7 d. The viral load was undetectable after transfusion in seven patients who had previous viremia. No severe adverse effects were observed. This study showed CP therapy was well tolerated and could potentially improve the clinical outcomes through neutralizing viremia in severe COVID-19 cases. The optimal dose and time point, as well as the clinical benefit of CP therapy, needs further investigation in larger well-controlled trials.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/physiopathology , Female , Humans , Immunization, Passive , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/physiopathology , RNA, Viral , SARS-CoV-2 , Viral Load , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL